ISCA: International Standard Cytogenomic Array (ISCA) Consortium and Database

July 8, 2009

David H. Ledbetter, Ph.D.

david.ledbetter@emory.edu

1981

"Cytogenetics will become extinct within the next 5 years."

C. Thomas Caskey, M.D., Chair Department of Human Genetics Baylor College of Medicine

Cytogenetics: The FIRST whole genome technology!

Requires 500-600 evenly spaced DNA probes to match the power of the karyotype.

Key Features of G-banded Karyotype

- First whole-genome technology to detect clinically significant genomic imbalances (deletions, duplications)
- Benign polymorphisms (CNVs) identified by empiric experience over a number of years

A REAL PROPERTY AND A REAL	and some set	Contraction of the second seco	Chonese and)[
SCOLOR STATE	6		8	9	allowed by 10	Cilling and a second se	12
ĺ	13	14	15	16		17	18
2	9	20 20)) fr 21	22	x	Ŷ	
					Fror	n N. (Chia

Gene dosage lessons from 50 years of cytogenetics experience

- Monosomy and deletions cause more severe phenotypic consequences than trisomy and duplications
 - No viable autosomal monosomies (only 45,X)
- Larger imbalances (more genes) more severe phenotype than smaller imbalances

• Imbalance of G-negative bands (gene-rich) more severe than G-positive bands (gene-poor)

Gene dosage lessons from 50 years of cytogenetics experience

- Not all genes are dosage-sensitive
 - Down syndrome "critical region"
- phenotype in microdeletion syndromes attributed to 1 or few genes (UBE3A -> Angelman syndrome)

Key Features of G-banded Karyotype

Clinical significance of imbalance in proband sometimes requires parental studies to determine if pathogenic or benign (de novo taken as evidence likely pathogenic)

But, limited resolution (5-10 Mb), variable quality and subjective interpretation

Lesson 1: The "Gold Standard" karyotype has become tarnished

How much structural variation is there in humans? -individual and population (*note vast majority is CNV)

http://projects.tcag.ca/variation/

lafrate et al, *Nature Genetics* 2004

Gene Dosage Map and CNVs

How many genes in the genome are dosage sensitive? (haploinsufficiency or triplosensitive)

- Probably a minority (? 5-10%).
- Many genes are not dosage sensitive
 - heterozygous carriers for autosomal recessive disorders

? 10 CNVs or 1 dosage insensitive region with an infinite # of possible CNVs

Evolution of Array Designs

Targeted + Whole Genome Arrays

Genet Med 2008:10(6):415-429.

article

Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray

Erin L. Baldwin, PhD, Ji-Yun Lee, PhD, Douglas M. Blake, BS, Brian P. Bunke, BS, Chad R. Alexander, BS, Amy L. Kogan, BS, David H. Ledbetter, PhD, and Christa L. Martin, PhD

Oligonucleotide microarray (60mers)

Custom-designed 4x44k format - Agilent

Custom Array Design by Clinical Cytogeneticists & Clinical Geneticists

Baldwin et al., 2008

Database of Genomic Variants (Oct. 2006) (http://projects.tcag.ca/variation/

CNVs Based on Size

Size Group (kb)

- Redon et al. (Nature 2006) 81 kb median with 500K array
- Lee et al. (unpublished) 2.7 kb median with 4.2 M array

Pathogenic vs. Benign Copy Number Changes

1. Region of known clinical significance:

- known del/dup or Mendelian disorders
- known benign CNC
- comparison with other cases in literature, databases
- 2. Gene Content
 - correlates with size and location
 - (G- bands gene-rich; G+ gene-poor)

3. Inherited or *de novo* (need parental samples in <5% of cases)

Targeted Coverage: PWS/AS Region

PWS/AS deletion

Targeted Coverage: PWS/AS Region

PWS/AS deletion

Atypical deletion

Whole Genome Coverage

12q: 4.7 Mb deletion ~11 known genes

15q: 4.5 Mb deletion ~21 known genes

2p: 3.0 Mb deletion ~ 12 known genes

FISH Confirmation – 2p deletion

32K BAC set

FISH = mech.

Targeted vs. Whole Genome Detection Rates

To date, more than 3,000 cases analyzed...

Abnormal detection rate: 18%

Targeted coverage: 13%

Whole genome coverage: 5%

Whole genome coverage enhances the detection of clinically relevant cytogenetic imbalances

<u>10% of patients who have karyotype first have a</u> <u>significantly delayed diagnosis!</u>

Case 11

Referring Dx: Dysmorphic features Developmental delay Hypotonia Hypoplastic penis

17p: 2.3 Mb deletion

Case 11

Loss of 17p13.2p13.1: ~2.3Mb

Cancer Susceptibility

<u>Referring Dx:</u> Dysmorphic features Developmental delay Hypotonia Hypoplastic penis

17p: 2.3 Mb deletion

p53 loss = Li-Fraumeni syndrome, high cancer risk

Adam et al., J Pediatrics, Jan., 2009 Other cases: *RB1*, *VHL*, Peutz-Jeghers

Mechanisms of Chromosome Rearrangements

Terminal telomere deletions with adjacent duplications – pre-meiotic breakage-fusion-bridge cycles after random breakage

Mechanisms of Chromosome Rearrangements

Breakpoint analysis: Random or specific mechanism?

Examined 54 cases with copy number imbalances (300 kb-10 Mb in size) with known inheritance:

15% mediated by flanking segmental duplications (NAHR)

85% were not associated with seg dups and most likely represent *random chromosome breakage*

C. Lee et al.: 7% of CNVs are associated with NAHR; majority are random

Current Status of Cytogenetic Array Testing

- Multiple platforms
 - BAC vs. oligo
 - aCGH, SNP, beadchip

All detect single copy loss and gain accurately

- Variable design and content
 - Targeted + whole-genome
 - increasing number of clinical loci including Mendelian genes
- ~300 cyto labs in U.S.
 - ? need/want 300 aCGH designs

International aCGH Workshops (https://isca.genetics.emory.edu)

June 23-24, 2008 (Atlanta, GA) 30 attendees from U.S., Canada, UK and Brazil Clinical Geneticists, Clinical Molecular & Cytogeneticists, Genomics & Bioinformatics

December 15-16, 2008 (Bethesda, MD) 60 attendees from U.S., Canada, UK, Belgium, Netherlands, Italy, Brazil 5 industry reps (Affymetrix, Agilent, BlueGnome, Nimblegen, OGT) NCBI, NHGRI, NIMH, NICHD

Summary of 1st workshop (https://isca.genetics.emory.edu)

- Central, public database for clinical cyto array data (raw data files and normalized data) extremely valuable to clinical and research communities to rapidly identify pathogenic vs. benign CNCs
 - all de-identified data to achieve largest numbers, albeit with minimal clinical info
 - complete raw data and normalized data files
 - encourage informed consent and detailed clinical information for DECIPHER submission whenever possible

Summary of 1st workshop (https://isca.genetics.emory.edu) • Need more, high quality data on benign CNCs in normal controls, including mutation rate

- Consensus that cytogenetic array should be 1st line diagnostic test for unexplained MR, MCA instead of karyotype (D. Miller, ms. in prep.)
- Need expert committee and evidence-based standards to make recommendations re:
 - clinical indications for testing
 - minimum standards for design, content, resolution, QA/QC
 - guidelines for interpretation and reporting

2nd workshop (https://isca.genetics.emory.edu)

- New, higher quality data on normal controls from research community; culling of poor data from DGV
- NCBI received NIH IRB approval for de-identified data submission to dbGaP using "opt-out" mechanism of consent
- Increased international participation (Canada, UK, Netherlands, Belgium, Italy)

ISCA Steering Committee (https://isca.genetics.emory.edu)

Leslie Biesecker (NHGRI/NIH) **Nigel Carter (Sanger Institute, UK)** John Crolla (Salisbury, UK) **Evan Eichler (University of Washington)** Ada Hamosh (Johns Hopkins/OMIM) **David Ledbetter (Emory University) Charles Lee (Harvard-Brigham & Women's) Christa Martin (Emory University) David Miller (Harvard-Boston Children's) Nancy Spinner (CHOP)** Joris Vermeesch (Universiteit Leuven, Belgium) **Greg Peters (Australia)**

International Public Database for Cytogenomic Array Data

- Initially, minimal phenotypic data requirement but efforts to encourage detailed phenotypic data and submission to DECIPHER
- Will perform quality checks, summary tables, and public data release on quarterly basis
 - available to UCSC, Ensembl, DECIPHER, commercial vendors, local lab databases

Proposal for a public database and evidencebased guidelines for design and interpretation

- Technology platform and vendor neutral: BAC, oligo, beadchip
 - Common denominator is genome sequence coordinates for gains and losses
- Develop evidence-based guidelines for optimal design and interpretation
 - Minimum standards

Current members of the Consortium: (agreed to public data sharing)

Alberta Children's Hospital **ARUP/University of Utah Beth Israel Deaconess Medical Center Children's Hospital of Philadelphia Children's Memorial Hospital, Chicago Cincinnati Children's Hospital Credit Valley Hospital Duke University Emory University** GeneDx Hamad Medical Corporation, Qatar **Henry Ford Hospital** Hospital for Sick Children, Toronto **Kaiser Regional Cytogenetics Lab London Health Sciences Centre Mayo Clinic Mission Health, Fullerton Genetics Lab**

Current members of the Consortium: (agreed to public data sharing)

Montefiore Hospital Northwestern Reproductie Genetics, Chicago **Stanford Hospitals and Clinics Sudbury Regional Hospital Texas Tech University U. Mass. Memorial Medical Center UMCG**, Groningen, Netherlands **U.** Alabama, Birmingham **U.** Florida **U.** Michigan **U. Nebraska U. Oxford, UK U. Rochester** U. Sao Paolo, Brazil **U. Wisconsin U. Medical Center, Ljubljana Wessex Regional Genetics Lab**

ISCA "Community" array design (for labs that don't have own custom designs) Current array – 44k (4-plex), 105k (2-plex)

- ISCA drafts 180k (4-plex)
 - 140k assigned; 40k available for customization

Result of merging designs of existing arrays: Emory – Ledbetter/Martin GeneDx – Aradhya Salisbury, UK – Crolla/Barber Oxford, UK – Knight/Smith/Connell Dutch Consortium/Oxford design - Kok Belgium Consortium - Vermeesch

Image: ...and continued improvements based on recommendations from ISCA Steering Committee

Whole-genome plus Targeted Community Array Design

Backbone: 2q24

chr2:157,747,500-161,647,500 basepairs

- 44K: ~75 kb spacing (225 kb resolution)
- 105K: ~35 kb spacing (105 kb resolution)
- 180K: ~25 kb spacing (75 kb resolution)

Targeted Gene: UBE3A

chr15:23,105,326-23,250,028 size: 145 kb

Targeted Gene: MECP2

chrX:152,921,476-153,035,363 size: 114 kb

Summary of Consortium Experience

- Whole-genome oligo array clinical testing implemented April, 2007 (Emory and GeneDx)
- Over 25,000 clinical cases performed to date; Currently >500 cases/week.
 - del 16p11.2 most common finding (1/300)
 - 1-2 new cases del 16p11.2 identified each week

del 16p11.2 and autism

Human Molecular Genetics, 2008, Vol. 17, No. 4 doi:10.1093/hmg/ddm376 Advance Access published on December 21, 2007

Recurrent 16p11.2 microdeletions in autism

Ravinesh A. Kumar¹, Samer KaraMohamed¹, Jyotsna Sudi¹, Donald F. Conrad¹, Camille Brune⁵, Judith A. Badner⁴, T. Conrad Gilliam¹, Norma J. Nowak⁶, Edwin H. Cook Jr⁵, William B. Dobyns^{1,2,3} and Susan L. Christian^{1,*}

and Mark J. Daly, Ph.D., for the Autism Consortium

The New York Times

THE DNA AGE

After DNA Diagnosis: 'Hello, 16p11.2. Are You Just Like Me?'

Samantha Napier, 14, left, and Taygen Lane, 4, share a rare genetic mutation.

By AMY HARMON Published: December 28, 2007

The girls had never met, but they looked like sisters.

The DNA Age

Articles in this series explore the impact of new genetic technology on American life. There was no missing the similarities: the flat bridge of their noses, the thin lips, the fold near the corner of their eyes. And to the families of 14-year-old Samantha Napier and 4-year-old Taygen

SIGI SAV	N IN TO E-MAIL OR TE THIS
₽	PRINT
	SINGLE PAGE
ē	REPRINTS
+	SHARE

del 16p11.2: clinical aCGH cases

Model for Genotype -> Phenotype Studies

Patients

- Identified on a clinical basis ("free")
- Early identification of at-risk children
- Emory: 10 patients
- GeneDx: 6 patients
- 1/300 clinical aCGH tests = del 16p11.2
 - at least one new patient/week in consortium

Conclusions & Predictions

- 1) Postnatal Cytogenetics- aCGH is much more sensitive that G-banded karyotype for postnatal, pediatric applications and *may soon become the primary genetic test* for children with unexplained developmental delay, mental retardation, birth defects, seizures, autism, etc.
- 2) Prenatal Diagnosis-

NIH sponsored multicenter trial on prenatal aCGH underway to compare aCGH to Gbanded karyotype. Results in ~2 years, but expect aCGH to win.

Acknowledgements

Emory University: Christa Lese Martin, Ph.D. Erin B. Kaminsky, Ph.D. Margaret Adam, M.D.

The physicians, genetic counselors and families involved in these cases.

Grant Support: NIH Luminex-ACMGF